Spectral based Discontinuous Galerkin Reduced Basis Element method for parametrized Stokes problems
نویسندگان
چکیده
In this work we extend to the Stokes problem the Discontinuous Galerkin Reduced Basis Element (DGRBE) method introduced in [1]. By this method we aim at reducing the computational cost for the approximation of a parametrized Stokes problem on a domain partitioned into subdomains. During an offline stage, expensive but performed only once, a low-dimensional approximation space is built on each subdomain. For any new value of the parameter, the rapid evaluation of the solution takes place during the online stage and consists in a Galerkin projection onto the low-dimensional subspaces computed offline. The high-fidelity discretization on each subdomain, used to build the local low-dimensional subspaces, is based on spectral element methods. The continuity of both the velocity and the normal component of the Cauchy stress tensor at subdomain interfaces is weakly enforced by a discontinuous Galerkin approach.
منابع مشابه
A Discontinuous Galerkin Reduced Basis Numerical Homogenization Method for Fluid Flow in Porous Media
We present a new conservative multiscale method for Stokes flow in heterogeneous porous media. The method couples a discontinuous Galerkin finite element method (DG-FEM) at the macroscopic scale for the solution of an effective Darcy equation with a Stokes solver at the pore scale to recover effective permeabilities at macroscopic quadrature points. To avoid costly computation of numerous Stoke...
متن کاملA reduced basis finite element heterogeneous multiscale method for Stokes flow in porous media
A reduced basis Darcy-Stokes finite element heterogeneous multiscale method (RBDS-FE-HMM) is proposed for the Stokes problem in porous media. The multiscale method is based on the Darcy-Stokes finite element heterogeneous multiscale method (DS-FE-HMM) introduced in [A. Abdulle, O. Budáč, Multiscale Model. Simul. 13 (2015)] that couples a Darcy equation solved on a macroscopic mesh, with missing...
متن کاملNon-Linear Petrov-Galerkin Methods for Reduced Order Modelling of the Nav‐ ier-Stokes Equations using a Mixed Finite Element Pair
A new nonlinear Petrov-Galerkin approach has been developed for Proper Orthogonal Decomposition (POD) Reduced Order Modelling (ROM) of the Navier-Stokes equations. The new method is based on the use of the cosine rule between the advection direction in Cartesian space-time and the direction of the gradient of the solution. A finite element pair, P1DGP2, which has good balance preserving propert...
متن کاملHigh-Order Spectral Volume Method for the Navier-Stokes Equations on Unstructured Grids
In this paper, the spectral volume (SV) method is extended to solve the Navier-Stokes equations by treating the viscous terms with a mixed formulation named local Discontinuous Galerkin approach. The SV method combines two key ideas, which are the basis of the finite volume and the finite element methods, i.e., the physics of wave propagation accounted for by the use of a Riemann solver and hig...
متن کاملA Space-Time Petrov-Galerkin Certified Reduced Basis Method: Application to the Boussinesq Equations
We present a space-time certified reduced basis method for long-time integration of parametrized noncoercive parabolic equations with quadratic nonlinearity. We first consider a finite element discretization based on discontinuous Galerkin time integration and introduce associated Petrov-Galerkin space-time trialand test-space norms which yields optimal and asymptotically mesh independent stabi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Computers & Mathematics with Applications
دوره 72 شماره
صفحات -
تاریخ انتشار 2016